
Journal of Sound and Vibration (1997) 204(3), 397–419

UNCOUPLED FLEXURAL VIBRATIONS OF
STRAIGHT BEAMS WITH ALL POSSIBLE
BOUNDARY CONDITIONS TREATED
BY A TRANSFER MATRIX METHOD
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A computer code is developed to furnish the details of the frequencies, mode shapes
(displacement, slope, shear force and bending moment) and generalized masses for the
uncoupled flexural vibrations of straight beams with all possible boundary conditions,
accounting for complicating effects such as shear deformation, rotary inertia, variable axial
loading and flexibility of supports. A transfer matrix procedure has been used in developing
the code. The results produced by the presently developed code are validated by comparison
with exact solutions developed in this paper for certain cases, and also with the results
available in the published literature. The code is shown to produce results of excellent
accuracy, and it is believed that it will be useful to the designer in obtaining dependable
results for fairly complex beam geometries with discontinuities in mass and stiffness
distributions, support flexibilities and variable axial loads.
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1. INTRODUCTION

There are several methods for the solution of beam vibration problems. In the continuum
model approach, the minimum of potential energy, and the complementary energy
methods [1, 2] are widely used. While the potential energy approach is known to produce
accurate displacements and poor stresses, the complementary energy produces accurate
stresses and poor displacements. In order to achieve accurately both the stress and the
displacement fields simultaneously, one uses certain mixed variational principles,
notable among which are the Reissner principle, and the Dean and Plass dynamic
variational principle [3, 4]. Solution of the differential equations describing the motion of
the beam is accomplished by the Galerkin method [5, 6], the finite difference method [7, 8],
and by an improved finite difference method [9, 10]. However, as the beam geometry
becomes more complex, and discontinuities in mass and stiffness distributions along with
non-classical boundary conditions exist, the differential equations become more complex,
the energy functional becomes more unwieldy, and the basic simplicity and appeal found
in the methods discussed earlier while solving the classical type of problems will be
completely overshadowed. In such situations, the methods developed by Holzer [11],
Myklestad [12], and their extensions [13], termed under the category of transfer matrix
methods, assume vital importance.

Thus, in the present paper the aim is to develop a computer code by using a transfer
matrix procedure for the solution of the beam flexure problem with all possible boundary
conditions, including a large number of complicating effects such as the shear deformation,
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rotary inertia, spring supports, discontinuities in mass and stiffness distributions, and
variable axial tension or compression. It is believed that such a code will be of immense
use to the designer to obtain a preliminary set of results (uncoupled frequencies, mode
shapes and generalized masses) incorporating almost all non-classical effects. If necessary,
further refinement can be achieved by consideration of the coupling between the flexural
motion in two mutually perpendicular planes, torsional motion and extension. Such an
analysis, and development of a computer code for coupled motions, is the subject matter
of a proposed subsequent paper.

2. DEVELOPMENT OF TRANSFER MATRICES

The basic building blocks in the transfer matrix procedure are the field transfer matrix
and the point transfer matrix. Pestel and Leckie [14] provide the general guidelines for the
derivation of the transfer matrices. However, when a beam is subjected to axial loads, and
if shear deformation and rotary inertia effects are to be included in the analysis, the
relevant transfer matrices are not available in general, and one has to develop them as
discussed in what follows.

2.1.   

For the case of a beam with axial tensile or compressive load, and including the effects
of shear deformation and rotary inertia [3], the following equilibrium equations can be
obtained (see Figure 1):

V=KGA(w'+c)2Pw', M=EIc', c'=M/EI. (1–3)

Note that the upper sign is to be used for the case of axial tension and the lower sign
for the case of axial compression in all the equations that follow, as shown in equation
(1). Since each cross-sectional face rotates through an angle, c, the inertia couple is
rAi2yv2c dx and the inertia force is rAv2w dx. Thus,

dM/dx=V− mi2yv2c3Pw', dV/dx=−mv2w. (4, 5)

Differentiating equation (1), equating the result to equation (5), replacing c' from
equation (3) and simplifying, one has

w0+KGA/(KGA2P)(M/EI)+ mwv2/(KGA2P)=0. (6a)

Figure 1. An element of a Timoshenko beam: (a) differential under compressive axial load; (b) differential
element under tensile axial load.
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Let z=KGA/(KGA2P). Then equation (6a) is given as

w0+ z(M/EI)+ mv2w/(KGA2P)=0, (6b)

and is rewritten as

M=−(EI/z)[w0+ mv2w/(KGA2P)]. (6c)

Equation (6c), when differentiated twice, yields

M0=−(EI/z)[w2+ mv2w0/(KGA2P)]. (7)

Differentiating equation (4), one has

M0=V'− mi2yv2c'3Pw0, (8)

which can be rewritten by replacing V' from equation (5) as

M0=−mv2w− mi2yv2c'3Pw0. (9)

From equations (7) and (9), one has

−(EI/z)[w2+ mv2w0/(KGA2P)]+ mv2w+ mi2yv2c'2Pw0=0, (10a)

which can be written as follows upon replacing c'=M/EI from equation (6c):

w2+w0[mv2/(KGA2P)3Pz/(EI)+ mi2yv2/(EI)]

+w[−mv2z/(EI)+ mi2yv4/{EI(KGA2P)}]=0. (10b)

Letting

s= mv2l2/(KGA2P), g2 =Pzl2/EI, b4 = mv2zl4/EI,

t= mi2yv2l2/(EI)3Pzl2/(EI)= mi2yv2l2/(EI)3 g2,

equation (10b) is rewritten as

w2+w0(s+ t)/l2 −w(b4 − st3 sg2)/l4 =0. (11)

The solution for equation (11) may be sought as

w=C� elh, h= x/l, (12)

which, when substituted in equation (11), leads to

l4 + (s+ t)l2 − {b4 − st3 sg2}=0. (13)

The roots are 2l1 and 2il2 for the case of compressive loading, where

l1,2 = {[b4 3 sg2 + (s− t)2/4]1/2 3 (s+ t)2/2}1/2. (14)

Furthermore,

l2
2 − l2

1 = s+ t, l2
2l

2
1 = b4 3 sg2 − st. (15)

Since equation (11) is of fourth order in w, one can choose a solution of the form

w=C1 cosh l1h+C2 sinh l1h+C3 cos l2h+C4 sin l2h, (16a)

or, more conveniently,

V=A1 cosh l1h+A2 sinh l1h+A3 cos l2h+A4 sin l2h. (16b)
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Choosing equation (16b) as the solution, and noting that w=−V'/mv2 as given in
equation (5), one can find w. Similarly, by noting that c=V/KGA−w'3Pw' as given
in equation (1), one can find c, since V and w are already known. Finally, M is evaluated
from equation (3). The resulting equations can be written in matrix notation as

{Z(h)}=[B(h)]{a}, (17)

where

{Z(h)}= {−w c M V}T, {a}= {A1 A2 A A4}T, (18)

and [B(h)] is a (4×4) matrix, the elements of which are

B11(h) = k1l1 sinh l1h, B12(h)= k1l1 cosh l1h,

B13(h) =−k1l2 sin l2h, B14(h)= k1l2 cos l2h,

B21(h) = k2P1 cosh l1h, B22(h)= k2P1 sinh l1h,

B23(h) =−k2P2 cos l2h, B24(h)=−k2P2 cos l2h,

B31(h)= k3P1l1 sinh l1h, B32(h)= k3P1l1 cosh l1h,

B33(h) = k3P2l2 sin l2h, B34(h)= k3P2l2 cos l2h,

B41(h) = cosh l1h, B42(h)= sinh l1h,

B43(h) = cos l2h, B44(h)= sin l2h,

where

k1 = zl3/EIb4, k2 = l2/EIb4, k3 = l/b4, P1 = l2
1 + s, P2 = l2

2 − s. (19)

Equation (17) is next evaluated at h=0, which can be treated as the (i−1)th station of
the ith segment. The vector {a} in equation (17) is found by inverting matrices. Thus,

A1 0 L/k2 0 L2 −w

A2 L2/k1l1 0 L/k3l1 0 c
g
G

G

F

f

h
G

G

J

j

G
G

G

K

k

G
G

G

L

l

g
G

G

F

f

h
G

G

J

j
A3

=
0 −L/k2 0 L1 M

=[B(0)]−1{Z}i−1, (20)

A4 L1/k1l2 0 −L/k3l2 0 V

where

L=1/(l2
1 + l2

2), L1 = (l2
1 + s)L, L2 = (l2

2 − s)L, L1 +L2 =1,

L1L2 = (b4 3 sg2)L2 or b4 =L1L2/L2 2 sg. (21)

Note that

{Z}i =[B(h)]i{a}=[B(h)]h=1[B(0)]−1{Z}i−1. (22)

Thus, [B(h)]h=1 is evaluated by setting h=1 in equation (19), the matrix multiplication
prescribed in equation (22) is performed, and the resulting matrix is obtained.

There are certain advantages in treating the beam segment as massless with the mass
and mass moment of inertia lumped at its end points. With such a procedure whereby the
beam segment is massless, it can be demonstrated that the field transfer matrices,
applicable, respectively, for the bending in the x–z plane and the y–z plane, torsion and
extension, will be uncoupled from one another in terms of their respective variables of their
corresponding state vectors, although the point transfer matrix will exhibit coupling among
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all the variables of the state vector. In the general case of coupled bending–torsion–exten-
sional motion for a beam with non-coincident elastic and mass axes, derivation of the
transfer matrix similar to that given by the above procedure will be an uphill task [14].
With the beam treated as massless, however, the field and point transfer matrices can be
formulated with relative ease, as will be demonstrated in a proposed subsequent paper.
With this philosophy in mind, it is proposed to illustrate the derivation of the field transfer
matrix for a massless Timoshenko beam in what follows.

2.1.1. Field transfer matrix for tensile axial load
One can show that for the case of a massless beam with tensile axial load, m=0, s=0,

b=0, and

l1 = g, l2 =0, z=KGA/(KGA+P), g=z(zPl2/EI). (23)

The relation (22) is written as

{Z}i =[F]i{Z}i−1, (24)

1 zlD1 zl2D2/EI {zl3D3/EI−H2l/KGA}
0 cosh g lD1/EI l2D2/EI

[F]=G
G

G

K

k
0 zPlD1 cosh g lD1

G
G

G

L

l

, (25)

0 0 0 1

where D1 = (sinh g)/g, D2 = (cosh g−1)/g2 and D3 = (sinh g− g)/g3. Furthermore, H2 =0
if shear deformation is neglected, and H2 =1 if shear deformation is included. Note that
the term l/KGA is deducted from the fourth element of the first row of the matrix, since
the shear deformation effect due to axial load P was considered in the derivation of the
transfer matrix, while that due to lateral load was not. Derivation of the shear deformation
effect due to lateral bending which results in the presently deducted term l/KGA is
straightforward [3].

2.1.2. Reduction of the matrix for zero axial load
When axial tensile load is absent, P=0, g=0 leads to an indeterminate situation

for several elements of the field transfer matrix. Consider, for example, the fourth
element in the first row, F14 = zl3(sinh g− g)/(EIg3)−H2l/KGA. When g=0, z=KGA/
(KGA+P)=1 and F14c 06 0. Application of l’Hôpital’s rule leads to

F14 = l3/(6EI)−H2l/(KGA). (26)

A similar procedure for all the elements leads to

1 l l2/(2EI) {l3/(6EI)−H2l/(KGA)}
0 1 l/(EI) l2/(2EI)

[F]=G
G

G

K

k
0 0 1 l

G
G

G

L

l

. (27)

0 0 0 1

2.1.3. Field transfer matrix for a compressive load
For this particular case, m=0, s=0, b=0, and

l1 =0, l2 = g, z=KGA/(KGA−P), g=z(zPl2/EI). (28)
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Figure 2. Details of a lumped mass, mass moment of inertia and free body diagram: (a) spring supported mass;
(b), (c) spring coupled mass; (d) free body diagram.

For these parameters, the field transfer matrix is

1 zlD1 zl2D2/EI {zl3D3/EI−H2l/KGA}
0 cos g lD1/EI l2D2/EI

[F]=G
G

G

K

k
0 −zPlD1 cos g lD1

G
G

G

L

l

, (29)

0 0 0 1

where, now, D1 = (sin g)/g, D2 = (1−cos g)/g2 and D3 = (g−sin g)/g3. For the case of zero
compressive load, equation (29) reduces to that given in equation (27).

2.1.4. Comparison of the present field transfer matrix with that available in the published
literature [15]

If the development for the general transfer matrix presented in reference [15] is compared
to the present development, one can observe that there are certain differences in the way
the axial force is incorporated in the equilibrium equations. In the present development,
P enters into the shear equation through the total slope in a more rigorous manner [14],
V=KGA(w'+c)2Pw'. In reference [15], P enters into M' via the bending slope,
M'=V3Pc. Consequently, the term z=KGA/(KGA2P) does not appear in the
development of reference [15]. By setting z=1 in the present result, identical field transfer
matrices as given in reference [15] can be obtained. The present development is thus
believed to be more rigorous.

2.2.   

The point transfer matrix relates the state vector {Z}i from the left side of the mass to
the right side according to the relation

{Z}R
i =[P]i{Z}L

i . (30)

In order to develop the point transfer matrix, consider a mass m at a typical station
supported on a linear and a rotational spring (stiffness Kw and Kc ), having a mass moment
of inertia J= rAi2yl. When the beam deflects with a displacement of magnitude w and a
bending slope c, the equilibrium relation requires that (see Figure 2)
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−w 1 0 0 0 −w

c 0 1 0 0 c
g
G

G

F

f

h
G

G

J

j
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G

G
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k

G
G

G

L

l

g
G

G

F

f

h
G

G

J

j
M

=
0 (H1Jv2 +Kc ) 1 0 M

. (31)

V (mv2 −Kw ) 0 0 1 i V

In the above matrix, H1 is introduced for purposes of generalization. By assigning different
values for H1 and H2 (see equations (25) and (29)), one can address the Timoshenko beam
(allowing for shear deformation and rotary inertia, H1 =−1 and H2 =1); the Rayleigh
beam (bending with rotary inertia, H1 =−1 and H2 =0); a shear beam (bending with
shear deformation, H1 =0 and H2 =1), and an Euler–Bernoulli beam (H1 =H2 =0).
Although the Euler–Bernoulli beam theory disregards the effects of distributed rotary
inertia, one can study the effects of a concentrated moment of inertia, as in the case of
a disk mounted on a shaft. Thus, for the case of a rotating shaft, allowing for the effects
of gyroscopic effects, H1 is set equal to +1 or −3 for whirl in the same or the opposite
direction, respectively, as rotation. Furthermore, for the particular case in which the shear
deformation effects are ignored, the bending slope c will be equal to the total slope.
Finally, if an additional spring coupled mass mk exists at station i, the equivalent stiffness
Kd is added (see Figure 2) such that

VR
i =(mv2 −Kw +Kd )w+VL

i , (32)

where

Kd =−K12(K2 −mkv
2)/{K12 +K2 −mkv

2} (33)

for case (b) of Figure 2, and K2 is set equal to zero in equation (33) for case (c).

3. SOLUTION PROCEDURE

Consider a beam, as shown in Figure 2, discretized into n segments. Each station can
have a mass and mass moment of inertia lumped, and each mass may be supported on
linear and rotational springs. Each station may also have a spring supported mass as
shown in Figure 2. Furthermore, the segments need not be of equal length, but each
segment is assumed to have uniform flexural rigidity and shear stiffness, and the segment
of the beam is assumed to be massless. The numbering of the stations starts with zero on
the left end of the beam, with n being the station number of the right end.

Starting from the left of station zero, one can write the state vector for the right of
station zero as

{Z}R
0 = [P]0{Z}L

0 , (34)

wherein the point transfer matrix at station zero, [P]0, relates to the state vectors on either
side of it. Considering next the segment 0–1, that has a massless field, one can write

{Z}L
1 = [F]1{Z}R

0 , (35)

where the field transfer matrix for segment 1 relates to the state vectors existing on either
side of it. Thus, the following relations are written in a routine manner:

{Z}L
1 = [F]1[P]0{Z}L

0 ,

{Z}R
1 = [P]1{Z}L

1 = [P]1[F]1[P]0{Z}L
0 = [Q]1[P]0{Z}L

0 ,
···

{Z}R
n =[Q]n [Q]n−1 · · · [Q]1[P]0{Z}L

0 = [S]{Z}L
0 . (36)
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It may be noted that the matrix [S] is a 4×4 matrix:

S11 S12 S13 S14

S21 S22 S23 S24

[S]=G
G

G

K

k
S31 S32 S33 S34

G
G

G

L

l

. (37)

S41 S42 S43 S44

Thus, depending upon the boundary conditions, the frequency equation will be obtained
from equation (36).

3.1.      

When the left end of the beam is free, one has M=V=0 at station zero. Thus, equation
(36) becomes

−w R −w L S11 S12

c c S21 S22 −w L

g
G

G

F

f

h
G

G

J

j

g
G

G

F

f

h
G

G

J

j

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
F

f
h
J

jM
=[S]

M=0
=

S31 S32 c 0
. (38)

V n V=0 0 S41 S42

3.1.1. Free–free beam
For a free–free beam, the right end of the beam is also free, having M=V=0 at station

n. Thus equation (38) becomes

−w R S11 S12

c S21 S22 −w L

g
G

G

F

f

h
G

G

J

j

G
G

G

K

k

G
G

G

L

l

g
F

f
h
J

j0
=

S31 S32 c 0
, (39)

0 n S41 S42

which leads to the frequency equation

bS31 S32

S41 S42b=0. (40)

Since elements of [S] are functions of v2, one can find the natural frequencies as those
values of v2 that make the determinant, equation (40), zero.

3.1.2. Other boundary conditions
By extending the procedure discussed above, frequency equations can be derived for all

the possible boundary conditions by noting that for a free end, M=V=0; for a fixed
end, w=c=0; for a pinned end, w=M=0; and for a sliding end, c=V=0. The
resulting frequency equations are as follows:

(i) free–free beam, (S31S42 −S41S32)=0;
(ii) free–fixed beam, (S11S22 −S21S12)=0;
(iii) free–pinned beam, (S11S32 −S31S12)=0;
(iv) free–sliding beam, (S21S42 −S41S22)=0;
(v) fixed–fixed beam, (S13S24 −S23S14)=0;
(vi) fixed–pinned beam, (S13S34 −S33S14)=0;
(vii) fixed–sliding beam, (S23S44 −S43S24)=0;

(viii) pinned–pinned beam, (S12S34 −S32S14)=0;
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(ix) pinned–sliding beam, (S22S44 −S42S24)=0;
(x) sliding–sliding beam, (S21S43 −S41S23)=0. (41)

These are the unique combinations of the possible boundary conditions, and another set
can be written with fixed–free, pinned–free, pinned–fixed, sliding–free, sliding–fixed and
sliding–pinned boundaries which will lead to identical results as do their respective
counterparts finally. Thus, all the 16 possible boundary conditions are addressed in the
code developed.

3.2.  

In order to determine the mode shapes, the general procedure adopted can be conceived
from a discussion pertaining to the specific case of a free–free beam. Determination of the
deformation modes for the free–free beam is discussed first, and the procedure for
obtaining the rigid body modes for the unconstrained beam is addressed next. Thus,
recalling equation (39), one has

S31(−w)0 +S32(c)0 =0, S41(−w0)+S42(c)0 =0. (42)

From these equations, one can find c if the relative amplitude of (−w)0 is assumed to be
unity. Thus,

c0 =−S31/S32 =−S41/S42. (43)

The relative amplitudes of −w, c, M and V can now be determined for each of the natural
frequencies determined with the help of equation (36), written for any arbitrary station
i as

{Z}R
i =[Q]i [Q]i−1 · · · [Q]1[P]0{Z}L

0 = [Q]i [Q]i−1 · · · [Q]1[R], (44)

where

[R]= [P]0{1 −S31/S32 0 0}T. (45)

Since [P]0, [Q]i , [Q]i−1 · · · [Q]1 are known, one can determine the relative amplitudes of
{Z}R

i = {−w c M V}T for station i, and to the right of it from equations (44) and (45).
For a beam which is either unconstrained or partially constrained, rigid body modes

occur with zero frequency. In the present transfer matrix procedure, since all stations can
support springs, one can first determine a set of stations along the beam span at which
placement of a set of springs would eliminate the unconstrained degrees of freedom. At
such stations, linear and rotary springs of small stiffness are placed (Kw and Kc are chosen
so that the stiffness of the spring supports is negligible compared to the beam stiffness,
typically Kwl3/EI=Kcl/EI=10−4). The code is run now in the usual manner, taking care
to capture the rigid body modes, which will now occur at a frequency close to zero rather
than at exactly zero frequency. The rigid body modes thus obtained will be found to be
orthogonal to the deformation modes. This procedure will be illustrated in this paper
subsequently through a numerical example.

3.3.     

The orthogonality relations for the beam with effects of shear, rotary inertia and sprung
masses take the form

s
n

i=0

[miwijwik +H11Jicijcik ]+ s
p

mp [wpj + jpj ][wpk + jpk ]=Mjk . (46)
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Mjk =0 if j$ k is the orthogonality relation, and Mjk =Mjj is the generalized mass when
j= k, for any mode j. Furthermore, wij and cij are the values of the respective eigenvectors
for the jth mode at station i. Finally, jpj is the relative displacement of the sprung mass
at station p relative to the beam deflected position in the jth mode, and the summation
is made for all of the sprung masses. Finally, in equation (46), H11 =−1 when H1 =−1,
H11 =1 when H1 =1 or −3, and H11 =0 when H1 =0.

4. DETAILS OF THE COMPUTER CODE AND DEVELOPMENT OF
SOME EXACT SOLUTIONS

By utilizing the analysis presented, a computer code has been developed in the
FORTRAN language. The procedure adopted in the determination of the frequencies and
validation of the results produced by the code are discussed in what follows.

4.1.  

The computer code developed can determine the natural frequencies, relative amplitudes
of displacement, slope, bending moment and shear force, and performs checks on the
orthogonality of normal modes. The generalized mass for each mode is also obtained in
this process. The computer code is run on a WIPRO Super Genius 486 DX2 machine, with
double precision arithmetic. The logic used in determining the frequencies is through a
determinant search method. A small, initial value of the frequency is assumed as a guess,
and the determinant for any chosen beam configuration (see equations (40) and (41)) is
computed. The frequency is increased in small steps until the sign of the determinant is
observed to change. Once a sign change is observed between two successive values of the
assumed frequencies separated by a small increment, the determinant must have passed
through a zero value somewhere in between these two assumed values of the frequency.
Attempting to obtain the frequency which would produce an exact zero value of the
determinant is not of practical interest. Thus, the criterion used for the determination of
the natural frequency is either to check the difference between the positive and negative
values of the successive determinants to be less than a prescribed accuracy measure (less
than 10−30), or to determine whether the frequency has converged to a pre-assigned number
of significant figures (12–14 significant figures). If one of the above stated criteria cannot
be achieved, the code chooses the other criterion for the termination of that particular
frequency search. This frequency search is performed by halving the increment that existed
when the sign of the determinant was originally sought, so that the subsequently obtained
frequencies are separated by a halved interval, and this halving of the interval procedure
continues until the convergence criterion is met.

Once the natural frequency to a desired accuracy is obtained, the relative amplitudes
of displacement, slope, bending moment and shear force are obtained for each station, as
discussed in section 3.2, the orthogonality checks are performed and the generalized masses
are computed, as discussed in section 3.3.

4.2.  

Exact solutions can be developed for certain cases of uniform beams. Some such
solutions are obtained here for validating the results produced by the presently developed
code. A pinned–sliding beam case is considered first. The boundary conditions for this case
are

h=0, w=0, M=0; h=1, V=0, c=0. (47)
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By applying these boundary conditions in equations (17), one can show that A2 =A4 =0
and

(P1 +P2) cosh l1 cos l2 =0. (48)

Thus,

l1 $ 0 and l2 = (2N+1)p/2, where N=0, 1, 2, . . . . (49)

By substituting l=2i(2N+1)p/2 in equation (13), one obtains a quadratic equation in
v2, as

v4 −C1v
2 +C2 =0, (50)

where

C1 =KGA/(rI)+ p2(2N+1)2(E+KG)/(4rl2),

C2 = p4(2N+1)4EKG/(16r2l4), (51)

the solution of which is

v2 = {C1 2z[C2
1 −4C2]}/2. (52)

Solutions for v are obtained for N=0, 1, . . . , and for positive and negative signs before
the discriminant. These exact solutions are used for comparison of results produced by the
transfer matrix code.

A similar procedure for the case of a sliding–sliding beam gives l=2ipN,
N=0, 1, 2, . . . , which, introduced into equation (13), yields

C1 =KGA/(rI)+ p2N2(E+KG)/(rl2), C2 = p4N4EKG/(r2l4), (53)

in equation (52), which is used for the determination of v. Dolph [16] used a slightly
different approach, and obtained an exact solution for the pinned–pinned beam. It may
be noted that the exact solution for the pinned–pinned beam in [15] is identical to the
sliding–sliding beam case obtained here.

Examination of equation (52) indicates that there are two families of frequencies, one
for the negative sign before the discriminant and the other for the positive sign. One of
these two families belongs to the interactions and resonances between the shear
deformation and rotary inertia effects. These are the higher set of frequencies, obtained
with a positive sign before the discriminant in equation (52) for any assigned value of N.
The second set of frequencies belonging to the lower category are the counterparts for the
classical Euler–Bernoulli theory eigenvalues, presently allowing for the shear and rotary
inertia corrections. Frequencies corresponding to the higher set are identified as secondary
modes, with an increasing order of numbering, in the discussion that follows.

5. RESULTS AND DISCUSSION

Several types of beam configurations with all possible boundary conditions,
discontinuities in mass and stiffness distributions, variable axial tension or compression,
and spring supports were solved by using the presently developed code. These results were
compared with those available in the published literature [15–18], and excellent agreement
was observed between the results compared. A typical set of results is presented in this
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section to validate the present code. The examples are so chosen that each set of results
presented below helps validate one key non-classical effect addressed by the present code.

5.1.       

In order to validate the capability of the code in handling the shear deformation and
rotary inertia effects, the following rectangular cross-section beam is taken: L=1 m,
d/b=0·25, r̄ (least)=0·025, G=80 GPa, r=7800 kg/m3, K=10(1+ n)/(12+11n),
E=200 GPa.

The beam is divided into 100 equal segments, and the mass and mass moment of inertia
is lumped at the centroid of each segment. Thus, the discretized model has 101 stations.
Segment 1, between station zero and station 1, has a length of L/200, as also does the last
segment. The remaining segments have equal lengths, of L/100 each. The mass and mass
moment of inertia lumped at station zero and those lumped at station 101 are zero, while
the remaining stations have equal masses (rAL/100) and equal mass moments of inertia
(rIL/100). All of the segments have the same flexural rigidity (EI) and shear stiffness
(KGA). While addressing the flexural vibration in the flexible direction of the beam, I is
taken as bd3/12, while for vibration in the stiff direction, I is taken as db3/12. By using this
model, frequencies, mode shapes and generalized masses are obtained for a pinned–sliding
beam and for a pinned–pinned beam. Exact solutions are also produced, as discussed in
section 4.2. These results are tabulated in Tables 1–6.

5.1.1. Pinned–sliding beam
Results pertaining to the pinned–sliding beam from the exact solution for the

Timoshenko beam theory are presented in the first four columns of Table 1. As discussed
in section 4.2, two families of frequencies are obtained, one with a negative sign before
the discriminant and the other with a positive sign before the discriminant. These exact
frequencies are tabulated in an increasing order of magnitude, with the appropriate sign
before the discriminant and the appropriate value of N that produced the frequency under
reference also being noted against the frequency value.

The exact frequencies obtained in accordance with Euler–Bernoulli theory, and the
presently computed frequencies by the code, are presented in the last two columns of the
table.

The frequencies produced by the code, including the effects of shear deformation and
rotary inertia, are presented in the fifth column of the table, and the type of the mode is
identified from the mode shapes produced by the code.

An examination of these results indicates that an excellent agreement exists between the
results produced by the present code and the corresponding exact solutions. The lowest
ten modes of vibration in the flexible direction of the Timoshenko beam correspond to
the lower family of eigenvalues of the exact solution, and correspond to the lowest ten
frequencies produced by Euler–Bernoulli theory, the difference between the two sets being
the inclusion of shear and rotary inertia effects in the former set and their suppression in
the latter set.

An examination of the frequencies pertaining to the vibration of the beam in the stiffer
direction reveals the fifth, seventh and the ninth modes in the increasing order of frequency
correspond to the higher family of eigenvalues in the exact solution for the Timoshenko
beam. These modes are identified as secondary modes in the table referred to, and their
mode shapes resemble the first, second and third mode shapes of the lower family
frequencies. These mode shapes are presented in Figure 3. However, their occurrence is
somewhere in between the higher modes of the lower family of the eigenvalues.
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T 1

Frequencies for a pinned–sliding beam (rad/s)

Results from Timoshenko Results from Euler–
beam theory Bernoulli beam theory

ZXXXXXXXXXXXXXCXXXXXXXXXXXV ZXXXXCXXXXV
Exact solutions Solutions from transfer

matrix method
ZXXXXCXXXXV ZXXXXXXCXXXXXXV

Sl. Value Exact Computed
no. of N Sign Frequency Frequency Mode type frequency frequency

Modes in flexible direction (r̄=0·025)
1 0 − 311·41 311·41 Mode 1 312·354 312·354
2 1 − 2 737·86 2 737·86 Mode 2 2 811·188 2 811·188
3 2 − 7 286·65 7 286·47 Mode 3 7 808·857 7 808·857
4 3 − 13 499·80 13 498·70 Mode 4 15 305·360 15 305·358
5 4 − 20 925·30 20 921·06 Mode 5 25 300·696 25 300·689
6 5 − 29 196·20 29 184·20 Mode 6 37 794·867 37 794·844
7 6 − 38 043·10 38 018·20 Mode 7 52 787·873 52 787·809
8 7 − 47 276·90 47 229·22 Mode 8 70 279·712 70 279·561
9 8 − 56 767·10 56 684·75 Mode 9 90 270·386 90 270·043

10 9 − 66 424·50 66 292·48 Mode 10 112 759·890 112 758·763

Mode in stiff direction (r̄=0·1)
1 0 − 1 193·54 1 193·54 Mode 1 1 249·417 1 249·417
2 1 − 8 390·28 8 390·00 Mode 2 11 244·754 11 244·754
3 2 − 17 823·90 17 821·40 Mode 3 31 235·428 31 235·427
4 3 − 27 672·10 27 662·48 Mode 4 61 221·438 61 221·432
5 0 + 30 862·20 30 857·23 Secondary mode I — —
6 4 − 37 522·00 37 497·81 Mode 5 101 202·790 101·202·758
7 1 + 39 512·10 39 500·49 Secondary mode II — —
8 5 − 47 289·60 47 240·74 Mode 6 151 179·470 151 179·376
9 2 + 51 665·50 51 639·00 Secondary mode III — —

10 6 − 56 970·10 56 884·02 Mode 7 211 151·490 211 151·235

Furthermore, the orthogonality checks and generalized masses for the modes in the stiff
direction are presented in Table 2, and the normalization factors (the maximum amplitude
of the displacement in any given mode shape) in Table 3. These results show that the
orthogonality relations are satisfied even between the primary and the secondary modes,

T 2

Orthogonality checks and generalized masses for a pinned–sliding beam (modes are not
normalized): modes in stiff direction

Mij

ZXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV
Mode Mode Mode Mode Mode Mode

Mode j i=1 i=2 i=3 i=4 i=5 i=6

1 55·5761 −0·3526E−10 −0·2419E−10 0·6863E−11 0·3323E−11 −0·9585E−12
2 14·227 −0·1523E−11 0·2558E−11 −0·1661E−10 −0·3654E−11
3 Symmetric 12·604 0·6034E−11 −0·1724E−11 −0·1506E−11
4 14·342 0·5633E−11 −0·3589E−11
5 11·963 0·3424E−11
6 17·258
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T 3

The maximum displacement amplitude in the mode shape (normalization factor, NF): modes
in the stiff direction

Mode no. NF Mode no. NF

1 0·68195 7 0·0299574
2 0·334052 8 0·419933
3 0·312456 9 0·0320118
4 0·335506 10 0·470567
5 0·014671 11 0·298769
6 0·673879 12 0·523872

revealing that the secondary modes are indeed part of the complete solution for the
Timoshenko beam theory. However, when a comparison is to be made with the
Euler–Bernoulli theory results, the lower family of eigenvalues are to be used to establish
the influence of shear and rotary inertia effects. The higher family of eigenvalues are a
consequence of interaction between the shear and rotary inertia effects themselves, as noted
in reference [16].

T 4

Frequencies for a pinned–pinned or sliding–sliding beam (rad/s)

Results from Timoshenko Results from Euler–
beam theory Bernoulli beam theory

ZXXXXXXXXXXXXXCXXXXXXXXXXXV ZXXXXCXXXXV
Exact solutions Solutions from transfer

matrix method
ZXXXXCXXXXV ZXXXXXXCXXXXXXV

Sl. Value Exact Computed
no. of N Sign Frequency Frequency Mode type frequency frequency

Modes in flexible direction (r̄=0·025)
1 1 − 1 234·53 1 234·53 Mode 1 1 249·417 1 249·417
2 2 − 4 774·16 4 774·11 Mode 2 4 997·668 4 997·668
3 3 − 10 215·00 10 214·46 Mode 3 11 244·754 11 244·753
4 4 − 17 086·30 17 084·01 Mode 4 19 990·674 19 990·670
5 5 − 24 974·00 24 966·91 Mode 5 31 235·428 31 235·414
6 6 − 33 561·10 33 543·95 Mode 6 44 979·016 44 978·976
7 7 − 42 620·90 42 585·97 Mode 7 61 221·438 61 221·338
8 8 − 51 996·30 51 932·98 Mode 8 79 962·695 79 962·490
9 9 − 61 579·30 61 474·14 Mode 9 101 202·790 101 202·437

10 10 − 71 295·80 71 132·51 Mode 10 124 941·710 124 942·368

Modes in stiff direction (r̄=0·1)
1 1 − 4 271·58 4 271·54 Mode 1 4 997·668 4 997·668
2 2 − 12 999·10 12 998·09 Mode 2 19 990·674 19 990·674
3 3 − 22 735·40 22 730·06 Mode 3 44 979·016 44 979·014
4 1 + 29 482·00 29 477·82 Shear mode* — —
5 4 − 32 605·30 32 589·49 Mode 4 79 962·695 79 962·681
6 2 + 34 493·40 34 485·96 Secondary mode I — —
7 5 − 42 417·20 42 382·05 Mode 5 124 941·710 124 941·658
8 3 + 45 338·90 45 321·07 Secondary mode II — —
9 6 − 52 140·10 52 074·31 Mode 6 179 916·060 179 915·905

10 4 + 58 326·30 58 288·52 Secondary mode III — —

*ZKGA/rI=29481.98
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T 5

Orthogonality checks and generalized masses for pinned–pinned beam (modes not
normalized): modes in stiff direction

Mij

ZXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV
Mode Mode Mode Mode Mode Mode

Mode j i=1 i=2 i=3 i=4 i=5 i=6

1 20·2959 −0·1623E−10 −0·6646E−11 −0·4226E−11 0·3973E−11 0·3550E−11
2 12·6788 −0·1124E−11 −0·1269E−10 0·1376E−10 0·8727E−11
3 Symmetric 13·2445 0·2061E−11 −0·5064E−11 −0·8194E−11
4 2·34198 0·1777E−11 −0·1563E−11
5 15·7865 0·2678E−11
6 1·24302

5.1.2. Pinned–pinned beam

Results pertaining to the pinned–pinned beam for the numerical example given in section
5.1.1 are presented in Tables 4–6. The agreement between the exact solutions and the
results produced by the present code is excellent.

The frequencies for the beam vibration in the stiff direction show certain interesting
features. In particular, the mode at serial number 4, when examined carefully, shows
almost negligible relative displacement (see Table 6), an order of magnitude smaller
generalized mass in comparison to the other modes, and a constant value of shearing force
(relative amplitude=0·20341856×1010 N) along the entire beam span. Furthermore, the
frequency of this mode is found to be equal to the value of zKGA/rI . The bending slope
for this mode is seen to be 1·0004238 all along the span, except at its ends, where it is 1·0.
This mode is thus identified as the shear mode in Table 4. Furthermore, the modes at serial
numbers 6, 8 and 10 are identified as secondary modes I, II and III respectively, and these
modes belong to the family of exact solutions with a positive sign before the discriminant.
The generalized masses for these modes are an order of magnitude smaller than the
remaining ones shown in Table 5, obey the orthogonality relations, and have a relatively
smaller mode shape amplitude (see Table 6). The mode shapes of secondary modes I, II
and III are similar to the corresponding primary modes, modes 1, 2 and 3 respectively,
and are of opposite phase (similar to the trends shown in Figure 3).

Finally, another set of results was produced with E/KG=3·2 and for various values of
r̄. The primary modes were identified, compared with the corresponding classical

T 6

The maximum displacement amplitude in the mode shape (normalization factor, NF): modes
in the stiff direction

Mode no. NF Mode no. NF

1 0·404263 7 0·394985
2 0·313476 8 0·0319035
3 0·321201 9 0·444589
4 0·126654E−10 10 0·0311850
5 0·353436 11 0·497048
6 0·0247448 12 0·550903
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Figure 3. The mode shapes of pinned–sliding beam.

Euler–Bernoulli frequencies, and their ratios were compared to those presented in reference
[19]. Good agreement is found here.

It may be noted that the exact solutions for frequencies of pinned–pinned beam are
identical to those for sliding–sliding beam. It was verified that the results produced by the
code for the sliding–sliding beam are almost identical to those of the pinned–pinned beam.
Thus, the results presented in Table 4 are also applicable to the sliding–sliding beam case.
However, the mode shapes are different and, for brevity, are not presented here.

5.2.        

In order to validate the code for beam cases with variable axial tension, the beam
example given in section 5.1 is assumed to rotate about an axis passing through its built-in
end, the plane of rotation of the beam being perpendicular to the axis of rotation in one
case (radial rotating beam), and the beam being lifted out of the plane of rotation by an
angle bpc in another case (preconed beam).

For a preconed beam with a precone bpc , each mass mi of the discretized beam model
is subjected to a centrifugal force miV

2ri cos2 bpc , since the rotation vector now has to be
resolved for the blade orientation. Associated with this, the beam has a softening effect
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miV
2 sin2 bpc in its flapping direction (out-of-plane motion). In the in-plane (lead–lag)

direction, however, the softening effect is −miV
2.

Thus, in the transfer matrix code, one has to provide the details of the tension in each
segment as well as the softening effect due to rotation. For any segment i bounded between
stations i−1 and i, the tensile force is computed from the following scheme:

Pn =(V2 cos2 bpc )mnR, Pn−1 =Pn +(V2 cos2 bpc )mn−1(R− ln ), . . . ,

Pi =Pi+1 + (V2 cos2 bpc )mi 6R− s
n

k= i+1

lk7. (54)

Here, Pi is the tension in the ith segment of the beam, R is the radius of the beam (R=L),
mi is the mass lumped at the ith station, and lk is the length of the kth segment.

The softening effect for flapping motion is provided by springs with negative stiffness,
Kwi =−miV

2 sin2 bpc , i=0, 1, . . . , n. While solving for the in-plane vibrations, the
lead–lag softening is simulated in a similar manner, with a negative spring stiffness of
−miV

2, i=0, 1, 2, . . . , n.
The results thus produced for a radial rotating beam with bpc =0, and rotating with an

angular velocity V=v1 =3·51602zEI/rAL4, are presented in Table 7. A comparison of
these results with those published in reference [10] shows excellent agreement for the
Euler–Bernoulli beam theory cases. The effects of shear and rotary inertia are seen to be
more pronounced for the stiff in-plane modes, as expected, and also on higher modes for
the out-of-plane vibration.

Next, a beam case representative of an advanced turboprop blade is addressed. This
beam has a thickness ratio of 0·05, precone of 15°, and is subjected to speeds of up to
V/v1 =1·0. The beam model discussed earlier is solved by using the present code, and the
results obtained are presented in Table 8, where they are compared with linear and
non-linear beam theory results, including the Coriolis effects of reference [6], and the
MSC/NASTRAN calculations of reference [6]. The results produced by the present theory
are in excellent agreement with those of reference [6], since the Coriolis effects and
geometric non-linear effects are negligible for thin blades with precones of up to 15°.
Furthermore, the effects of shear and rotary inertia are negligible for thin blades vibrating
in their flexible direction, and these effects will become significant for the modes in the stiff
direction.

These examples validate the capability of the present code in handling variable axial
tension and spring supports.

T 7

The effect of rotation upon the frequency ratios, v/l1, of a cantilever blade: d/b=0·25

Shear deformation (SD)
and rotary inertia (RI) SD and RI

effects neglected effects
Mode ZXXXXCXXXXV included:

V/v1 no. [10] Present present Mode type

1·0 1 5·1916 5·1914 5·1462 Flap mode
2 14·1480 14·1480 12·9580 Lead–lag mode
3 23·7830 23·7825 22·8819 Flap mode
4 63·4570 63·4610 58·2308 Flap mode
5 88·5200 88·5277 58·8228 Lead–lag mode
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T 8

Frequency ratios, v/l1, for a preconed, rotating cantilever blade: bpc =15°, d/b=0·05

Beam theory results [6] Present
(Coriolis effects included) results

ZXXXXXXXXXXCXXXXXXXXXXV excluding
Mode Coriolis

V/v1 no. Linear Non-linear MSC/NASTRAN effects

0·3 1 3·6776 3·6804 3·7062 3·6777
2 22·1849 22·1860 22·2934 22·1866
3 61·8467 61·8475 62·1044 61·8547

0·5 1 3·9476 3·9652 3·9950 3·9481
2 22·4498 22·4572 22·5585 22·4516
3 62·1113 62·1169 62·3354 62·1195

0·8 1 4·5356 4·6094 4·6451 4·5367
2 23·0828 23·1182 23·2026 23·0847
3 62·7514 62·7763 62·8837 62·7595

1·0 1 5·0138 5·1444 5·1781 5·0157
2 23·6522 23·7203 23·7926 23·6541
3 63·3360 63·3821 63·4078 63·3441

5.3.   :    

If a beam has axial loads at both ends, and the load variation is such that a tensile load
P1 applied at one end varies as P1 −Wx, with the load at the other end, x=L, being
P1 −WL, then the beam might be subjected to variable axial tension in a certain portion
of the beam span, with a variable axial compression in its remaining portion depending
upon W. The fundamental frequency parameter v1/l1 for such a beam is plotted against
WL3/EI for various cases of P1/WL for the case of pinned–pinned beams in Figure 4(a),
and for fixed–fixed beams in Figure 4(b). Here, v1 is the fundamental natural radian
frequency, and l1 =zEI/rAL4. These results are compared to those available in reference
[20], and excellent agreement is found for the buckling boundaries and the frequency
parameter variations in all the cases considered.

5.4.       

In order to validate the present code for cases of beams with variable mass and stiffness
distributions, several cases of tapered cantilever beams are solved. These beams have a
square cross-section (b0 = d0) at the root, and the breadth and depth at any section distant
x from the root are defined by

b= b0(1− bh), d= d0(1− dh), h= x/L. (55)

For these beams, the following characteristics are assumed: L=1 m, b0 = d0 = r̄Lz(12),
E=200 GPa, G=80 GPa, E/KG=3. The discretization procedure of the beam involves
computation of the segmental masses, lumping them at the centroid of the segment,
numbering the stations from the left end (free end, station 0) to the right end (built-in end,
station n, n=101 for 100 segments) with all the intermediate mass points having numbers
1, 2, . . . , n−1; and computing the flexural rigidity and shear stiffness of each segment as
applicable at its mid-span location. With the beam mass, and mass moment of inertia
lumped at 100 stations, frequencies were determined for various cases of b and d, by using
Euler–Bernoulli theory and Timoshenko theory. The frequency ratio, the square of the
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Figure 4. The effect of linearly varying axial loads on the fundamental frequency: (a) pinned–pinned beam;
(b) fixed–fixed beam.

frequency including shear and rotary inertia effects (p2
t ) to the square of the frequency

neglecting shear and rotary inertia effects (p2
c ), is calculated for the first five modes, and

for various values of the non-dimensional radius of gyration of the beam at the root
section. These results are plotted in Figure 5 for the case of b=0, d=−0·5. Another set
of results for the case b= d=−0·5 is also shown for r̄=0·08. These results are compared
with those presented by Carnegie and Thomas [8], and excellent agreement is found. This
example illustrates the capability of the code in handling variable mass and stiffness
characteristics of beams.

5.5.    :      

 

For beams which are unconstrained or only partially constrained against rigid body
displacements by their external support system, the vibration frequencies corresponding

Figure 5. Frequency parameter variation for tapered Timoshenko beams. ——, b=0, d=−0·5; w,
b= d=−0·5.
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T 9

Rigid body mode and deformation mode frequencies (rad/s), and generalized masses, for a
free–free beam: spring stiffness for stations 0, 50, 51 and 101=KwL3/EI=KcL/EI=0·0001

Solution without any Solution including
spring supports spring supports

Mode Exact ZXXXXXXCXXXXXV ZXXXXXCXXXXXXV
no. solution Euler–Bernoulli Timoshenko Euler–Bernoulli Timoshenko

Rigid body modes
I 0 — — 3·56 3·56

II 0 — — 15·61 15·55

Deformation modes
1 2 832·29 2 832·73 2 760·53 2 832·98 2 760·77
2 7 807·31 7 809·36 7 284·11 7 809·62 7 284·34
3 15 305·45 15 311·06 13 498·00 15 311·32 13 498·22
4 25 300·69 25 312·61 20 916·13 25 312·87 20 916·33
5 37 794·87 37 816·63 29 169·62 37 816·88 29 169·81
6 52 787·87 52 823·77 37 981·16 52 824·02 37 981·34

Generalized masses for Timoshenko beam

Rigid body modes Deformation modes
ZXXXXCXXXXV ZXXXXXXXXCXXXXXXXXV

I II 1 2 3 4

Generalized 381·74 69·55 60·76 64·69 69·90 76·15
mass

to the rigid body motions are zero. Determination of the rigid body modes and the
corresponding generalized masses can be accomplished in the present transfer matrix
method by adding small spring constraints to the unrestrained degrees of freedom [21].
This procedure is illustrated for the case of the beam example given in section 5.1, with
free–free boundary conditions.

The discretized beam model, developed as discussed earlier, is solved for free–free
boundary conditions, and the natural frequencies and mode shapes for the case of
deformation modes are determined, including or excluding the effects of shear deformation
and rotary inertia. Next, springs are provided at four stations; namely, at the two extreme
ends of the beam and at the two central stations (stations zero, 50, 51 and 101) with
stiffnesses KwL3/EI=KcL/EI=0·0001. These springs are sufficient to constrain the rigid
body degrees of freedom. The code is run again for the determination of the frequencies,
mode shapes and generalized masses as before. This model provides two rigid body modes
along with the deformation modes. The results thus obtained, along with exact solutions,
are shown in Table 9, and the mode shapes are shown in Figure 6.

A comparison of these results indicates that the rigid body modes obtained presently
are 3·55 rad/s and 15·55 rad/s, respectively, rather than an exact zero for each of these rigid
body modes. However, in comparison to the deformation modes, the present rigid body
mode frequencies may be regarded as zero. Furthermore, the deformation modes are
essentially the same whether or not the spring supports are placed. Finally, the
orthogonality relations are found to be satisfied, and the generalized masses of the
deformation modes remain essentially unchanged whether or not the spring constraints are
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Figure 6. Rigid body modes and deformation modes of a free–free Timoshenko beam.

included in the beam model. Thus, the presently developed transfer matrix procedure can
effectively handle unconstrained or partially constrained beams.

6. CONCLUSIONS

The transfer matrix method presented in this paper has been shown to produce accurate
solutions with all possible boundary conditions, and with complicating effects such as shear
deformation, rotary inertia, discontinuities in mass and stiffness distributions, and spring
supports. The method is quite simple, and does not require a large space while the program
is run on the computer. The method, in its present form, has not introduced any
convergence problems or computational difficulties.

In view of the simplicity in the analysis, the lower space requirement on the computer,
and the excellent accuracy of the results produced by the method, it is believed that the
presently developed computer code would be of considerable use to the designer.
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APPENDIX A: NOMENCLATURE

A cross-sectional area
A1, A2, A3, A4 arbitrary constants
b, d breadth and thickness of beam
[B] matrix, see equation (17)
C1, C2 coefficients, see equation (52)
E, G Young’s modulus and shear modulus, respectively
[F], [P] field and point transfer matrices, respectively
H1, H2, H11 coefficients used to invoke or suppress shear and rotary inertia effects
i, j, k, p dummy indices
I second moment of area
J mass moment of inertia
K shear coefficient
K12, K2 stiffness of springs used for sprung mass
Kw , Kc linear and rotational spring stiffnesses
li length of segment i
L span of beam
mi mass lumped at the ith station
mk sprung mass
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M, V bending moment and shear force, respectively
Mij generalized mass if i= j, equal to 0 if i$ j
n number of stations
N integer in Timoshenko beam exact solution
P axial force
r̄ =zI/AL2, non-dimensional radius of gyration
w displacememt
x axial co-ordinate
{Z} state vector, see equation (18)
b, g, t, s see equation (11)
b, d taper parameters, see equation (55)
bpc blade precone angle
h =x/L, axial fractional length
l1, l2 roots, see equation (14)
L, L1, L2 see equation (21)
m =rA, mass per unit length
n Poisson ratio
r mass density
v natural radian frequency
V rotational speed of beam
c bending slope in Timoshenko beam theory, and total slope in Euler–Bernoulli

theory
z see equation (6)


